Warehouse Management System

PennWest California

Design Document

CSC 4900 — Senior Project 1

Group Members:
Brian Colditz
Shakear Wilson
Ty Kress

William Serowik

Instructor Comments/Evaluation

Table of Contents

Abstract
Description of the Document
Purpose and Use
Ties to the Specification document
Intended Audience
Project Block Diagram with description
Design Details
System Modules and responsibilities
System Overview
Overview
Architectural Diagram
Module Cohesion
Module Coupling
Design Analysis
Data Flow or Transaction Analysis
Design Organization
Detailed tabular description of Classes/Objects
Description
Data members / types / constraints
Member function listing / description
Functional description
Input/output/return parameters / types

Modules used

Files accessed
Real-time requirements
Messages
Narrative / PDL
Decision: Programming language/Reuse/Portability
Implementation Timeline
Design Testing
Appendix A: Schematic & Bill of Materials (BOM)
Appendix B: Team Details
Appendix C: Writing Center Report
Appendix D: Workflow Authentication

Appendix E: References

Abstract

The Warehouse Management System intends to help warehouse managers always track
and manage their inventory; this includes ongoing shipments, deliveries, and supplies within the
warehouse. While existing systems are available, they are less affordable and rely on manual or
outdated systems to track stock, leading to inefficiencies, errors, and increased operational costs.
The team aims to develop a warehouse management system to simplify inventory tracking and
management. It will focus on user-friendliness, compatibility, and practical use by warehouse
managers and workers. Implementing this system will allow these businesses to streamline
operations, reduce errors, and increase productivity. This document will show the development

management systems and the project plan.

Description of the Document

Purpose and Use:

The purpose of this document is to give the development team a strong foundation to
reference when developing this project. This will help aid and guide them through the
functionalities and goals of this warehouse management system as well as keeping everyone on
track without deviating too much from the source. That will include detailed descriptions of all

the software and functions needed for the project to work effectively and efficiently.

Ties to the Specification document:

This document is basically an extension of the specification document as it will go more
in-depth with this functionality and how we plan to execute that set plan. The document will
show in detail how we will design a WMS that can properly and efficiently store, delete, and
present the data to the user. It will be used by the developer team to implement its ideas into the

project.

Intended Audience:

This document is primarily aimed at developers and designers based on its technical
content and terminology. It isn't intended for clients but might benefit from reviewing to ensure
alignment with client requirements. Developers and designers can use this document to gain a
comprehensive understanding of the WMS which includes its front-end, back-end, data flow,

functionality, modules, architecture, and system requirements.

Project Block Diagram

The WMS project will consist of two parts: a web browser that resides on a smartphone or

computer (either Android, i0OS, windows, or other), and backend code on a Linux or Windows
server. The phone will interact with the backend server by sending scanned code info and view
the website on a browser. Once the backend has received the code info, it will then process the
data and update the database and webpage. From there the client can interact with the webpage

to view the data stored for the WMS system.

From the display the user access the
website through the network card.

A J

User Interface Metwork Card
A [
)) Access the Website on server using
Browser opens device Network card
camera and scans codes. Website displays through Metwork Card
v h 4
Camera Back-end Server
Ld o
Design Details

Svstem Modules and responsibilities:

System Overview

The WMS is intended to streamline warehouse chores by offering a responsive, user-
friendly interface that works on both desktop and mobile platforms. Its architecture separates
user interface design, core application functionality, and backend data processing, making for
easy maintenance and scalability. The system uses technologies such as Bootstrap for
interactivity and PHP and MySQL for data management. Docker deployment ensures a

consistent environment while also simplifying installation and upgrades.

Overview

The Warehouse Management System (WMS) will be built on a modular architecture to
ensure flexibility and scalability. The system will be built using a responsive design to support
both desktop and mobile platforms, making it accessible to a wide range of users. PHP and
MySQL will provide the backend functionality, allowing for quick data administration and real-

time changes via AJAX. Inventory procedures will be streamlined using barcode and QR

scanning capabilities, and user access will be secured with role-based authentication. The system
will be deployed in a Docker environment to ensure a constant and easily replicable setup
throughout the development, testing, and production phases. This organized method assures that

the WMS is reliable, user-friendly, and adaptable to future changes.

Architectural Diagram

| L) < >
+ 4 L J T
B
User oyse Apache Web
sepver WWW folder (PHP &

HTML files)

PHP Interpreter

(
MySQL Server

Module Cohesion

Each module in the WMS is dedicated to a specific, well-defined task, resulting in
excellent cohesiveness. For example, the Inventory Management Module is only dedicated to
stock monitoring, whereas the Reporting Module is in charge of analytics and insights. This
separation simplifies debugging, testing, and modification because changes to one module do not
affect the functioning of others. The obvious separation of duties also makes it easier to improve

or replace particular modules in the future.

Module Coupling

The WMS uses loose connectivity between modules to maximize flexibility and

adaptability. Modules communicate with one other through established interfaces, allowing them

10

to function independently. For example, the User Management Module secures access without
requiring extensive connection with the Inventory or Order Modules. Similarly, the Reporting
Module retrieves and processes data from other modules without relying directly on their internal
designs. This method eliminates dependency and increases system sturdiness.

Design Analysis

Modularity, scalability, and maintainability are key design considerations for the WMS.
By separating interface, functionality, and data processing levels, the system remains neat and
responsive to changing requirements. Bootstrap, for example, allows for a responsive and
appealing interface, whilst Docker ensures consistency in deployment. The backend sticks to
object-oriented concepts, allowing the system to be extended or modified without disturbing its

general structure.

Data Flow or Transaction Analysis

The flow of data within the WMS is intended to maximize efficiency while maintaining data
integrity. When a user scans a QR code, the system retrieves product information from the
database and changes inventory records in real time. Data from orders and shipments is
processed to change stock levels, establish delivery schedules, and alert users of updates. Each

transaction is validated to verify accuracy and security, resulting in an easy process for end users.

11

server

Apache
findfile @—— hello.php

browser l database

HTML — process PHP . :

Design Organization

Detailed tabular description of Classes/Objects:

Class name: Categories

Class description: Organizes products into categories, with information about each category’s
name and description for better inventory management.

Class data members: int $id, string $name, string description

Class member functions: getld(), setld(int $id), getName(), setName(string $name),

getDescription(), setDescription

Class name: Customers
Class description: Tracks customer information, including names, addresses, contact details,

and associated user agents.

12

Class data members: int $id, string $name, string $address, string $email, string $phone, int

$agent user id

Class member functions: getld(), setld(), getName(), setName(), getAddress(), setAddress(),

getEmail(), setEmail(), getPhone(), setPhone(), getAgentUserld(), setAgentUserld()

Class name: Orders

Class description: Represents customer orders, capturing details like customer and agent IDs,

order dates, statuses, and associated truck information.

Class data members: int $id, int Scustomer id, int Suser agent id, string $order date, string

$status, int $truck id

Class member functions: getld(), setld(), getCustomerld(), setCustomerld(), getUserAgentld(),
setUserAgentld(), getOrderDate(), setOrderDate(), getStatus(), setStatus(), getTruckId(),

setTrucklId()

Class name: Orderltems

Class description: Tracks items within an order, including product details, quantities, and their
association with specific orders.

Class data members: int $id, int $Sorder id, int $product id, int $quantity

Class member functions: getld(), setld(), getOrderld(), setOrderld(), getProductId(),

setProductld(), getQuantity(), setQuantity()

13

Class name: InventoryAudits

Class description: Handles data related to inventory audits, including expected and actual
quantities, discrepancies, audit dates, and location details.

Class data members: int $id, int $user id, int $product id, int $expected quantity, int

$actual quantity, int $discrepancy, string $audit date, int $location_detail id

Class member functions: getld(), setld(), getUserld(), setUserld(), getProductId(),
setProductld(), getExpectedQuantity(), setExpectedQuantity(), getActualQuantity(),
setActualQuantity(int $actual quantity), getDiscrepancy(), setDiscrepancy(), getAuditDate(),

setAuditDate(), getLocationDetailld(), setLocationDetailld()

Class name: VendorOrders
Class description: Manages orders placed with vendors, tracking vendor details, order dates,
statuses, and associated truck information.

Class data members: int $id, int $vendor id, string $order date, string $status, int $truck id

Class member functions: getld(), setld(), getVendorld(), setVendorld(), getOrderDate(),

setOrderDate(), getStatus(), setStatus(), getTruckId(), setTruckId()

Class name: VendorOrderltems
Class description: Tracks individual items in vendor orders, including the associated order,
product details, and quantities.

Class data members: int $id, int $order id, int $product _id, int $quantity

14

Class member functions: getld(), setld(), getOrderld(), setOrderld(), getProductld(),

setProductld(), getQuantity(), setQuantity()

Class name: Racks

Class description: Represents storage racks in the warehouse, including attributes such as color
and unique identification.

Class data members: int $id, string $color

Class member functions: getld(), setld(), getColor(), setColor()

Class name: Colors

Class description: Maintains a list of available color options used for categorizing or identifying
warehouse items or storage units.

Class data members: int $id, string $name

Class member functions: getld(), setld(), getName(), setName()

Class name: Products

Class description: Contains information about products stored in the warehouse, including
names, descriptions, prices, and categories.

Class data members: int $id, string $name, string $description, float $price, int $category id
Class member functions: getld(), setld(), getName(), setName(), getDescription(),

setDescription(), getPrice(), setPrice(), getCategoryld(), setCategoryld()

Class name: Vendors

15

Class description: Stores vendor details, including contact information such as names, emails,
and phone numbers.

Class data members: int $id, string $name, string $email, string $phone

Class member functions: getld(), setld(), getName(), setName(), getEmail(), setEmail(),

getPhone(), setPhone()

Class name: Trucks

Class description: Tracks vehicles used for transportation, including license plates and driver
information.

Class data members: int $id, string $license_plate, string $driver name

Class member functions: getld(), setld(), getLicensePlate(), setLicensePlate(),

getDriverName(), setDriverName()

Class name: Users

Class description: Manages system users, including usernames, passwords, and roles within the
warehouse management system.

Class data members: int $id, string $username, string $password, string $role

Class member functions: getld(), setld(), getUsername(), setUsername(), getPassword(),

setPassword(), getRole(), setRole()

Class name: UserRoles
Class description: Defines various roles available in the system to control user permissions and
access.

Class data members: int $id, string $name

Class member functions: getld(), setld(), getName(), setName()

Class name: InventoryTransactions

Class description: Records changes to inventory, detailing the type of change, quantities
involved, and transaction dates.

Class data members: int $id, int $product id, int Suser id, string $change type, int $quantity,
int $previous_quantity, int $new_quantity, string $transaction_date, int $location_detail id
Class member functions: getld(), setld(), getProductld(), setProductld(), getUserId(),
setUserld(), getChangeType(), setChangeType(), getQuantity(), setQuantity(),
getPreviousQuantity(), setPreviousQuantity(), getNewQuantity(), setNewQuantity(),

getTransactionDate(), setTransactionDate(), getLocationDetailld(), setLocationDetailld()

Class name: Locations

Class description: Represents specific storage locations in the warehouse, including rack IDs
and bay details.

Class data members: int $id, int $rack id, string $bay

Class member functions: getld(), setld(), getRackld(), setRackld(), getBay(), setBay()

Functional description

Categories Class

getld()
Input: None.

Output: Retrieves the ID of the category.

16

Return Parameters: Returns the category ID as an integer.
Types: Integer data type is used.

setld(int $id)
Input: Accepts an integer ID to set for the category.
Output: None.
Return Parameters: None.
Types: Integer data type is used

getName()
Input: None.
Output: Retrieves the name of the category.
Return Parameters: Returns the category name as a string.
Types: String data type is used.

setName(string $name)
Input: Accepts a string to set as the category name.
Output: None.
Return Parameters: None.
Types: String data type is used.

getDescription()
Input: None.
Output: Retrieves the description of the category.
Return Parameters: Returns the description as a string.
Types: String data type is used.

setDescription(string $description)

Input: Accepts a string to set as the category description.

Output: None.
Return Parameters: None.

Types: String data type is used.

Customers Class

getld()
Input: None.
Output: Retrieves the ID of the customer.
Return Parameters: Returns the customer ID as an integer.
Types: Integer data type is used.
setld(int $id)
Input: Accepts an integer ID to set for the customer.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getName()
Input: None.
Output: Retrieves the name of the customer.
Return Parameters: Returns the customer name as a string.
Types: String data type is used.
setName(string $name)
Input: Accepts a string to set as the customer name.

Output: None.

Return Parameters: None.
Types: String data type is used.

getAddress()
Input: None.
Output: Retrieves the address of the customer.
Return Parameters: Returns the address as a string.
Types: String data type is used.

setAddress(string $address)
Input: Accepts a string to set as the customer address.
Output: None.
Return Parameters: None.
Types: String data type is used.

getEmail()
Input: None.
Output: Retrieves the email address of the customer.
Return Parameters: Returns the email as a string.
Types: String data type is used.

setEmail(string $Semail)
Input: Accepts a string to set as the customer's email address.
Output: None.
Return Parameters: None.
Types: String data type is used.

getPhone()

Input: None.

Output: Retrieves the phone number of the customer.
Return Parameters: Returns the phone number as a string.
Types: String data type is used.

setPhone(string $Sphone)
Input: Accepts a string to set as the customer's phone number.
Output: None.
Return Parameters: None.
Types: String data type is used.

getAgentUserld()
Input: None.
Output: Retrieves the ID of the agent associated with the customer.
Return Parameters: Returns the agent user ID as an integer.
Types: Integer data type is used.

setAgentUserld(int $agent user_id)
Input: Accepts an integer ID to set as the agent for the customer.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

Orders Class

getld()
Input: None.

Output: Retrieves the ID of the order.

Return Parameters: Returns the order ID as an integer.
Types: Integer data type is used.

setld(int $id)
Input: Accepts an integer ID to set for the order.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getCustomerld()
Input: None.
Output: Retrieves the customer ID associated with the order.
Return Parameters: Returns the customer ID as an integer.
Types: Integer data type is used.

setCustomerld(int $customer_id)
Input: Accepts an integer customer ID to associate with the order.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getUserAgentld()
Input: None.
Output: Retrieves the user agent ID associated with the order.
Return Parameters: Returns the user agent ID as an integer.
Types: Integer data type is used.

setUserAgentld(int Suser_agent id)

Input: Accepts an integer user agent ID to associate with the order.

Output: None.

Return Parameters: None.

Types: Integer data type is used.
getOrderDate()

Input: None.

Output: Retrieves the date of the order.

Return Parameters: Returns the order date as a string.

Types: String data type is used.
setOrderDate(string Sorder_date)

Input: Accepts a string to set as the order date.

Output: None.

Return Parameters: None.

Types: String data type is used.
getStatus()

Input: None.

Output: Retrieves the status of the order.

Return Parameters: Returns the order status as a string.

Types: String data type is used.
setStatus(string $status)

Input: Accepts a string to set as the order status.

Output: None.

Return Parameters: None.

Types: String data type is used.

getTruckld()

22

Input: None.
Output: Retrieves the truck ID associated with the order.
Return Parameters: Returns the truck ID as an integer.
Types: Integer data type is used.

setTruckld(int $Struck_id)
Input: Accepts an integer truck ID to associate with the order.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

Orderltems Class

getld()
Input: None.
Output: Retrieves the ID of the order item.
Return Parameters: Returns the order item ID as an integer.
Types: Integer data type is used.
setId(int $id)
Input: Accepts an integer ID to set for the order item.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getOrderld()

Input: None.

23

Output: Retrieves the order ID associated with the order item.
Return Parameters: Returns the order ID as an integer.
Types: Integer data type is used.

setOrderld(int Sorder_id)
Input: Accepts an integer order ID to associate with the order item.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getProductld()
Input: None.
Output: Retrieves the product ID associated with the order item.
Return Parameters: Returns the product ID as an integer.
Types: Integer data type is used.

setProductld(int $product_id)
Input: Accepts an integer product ID to associate with the order item.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getQuantity()
Input: None.
Output: Retrieves the quantity of the product in the order item.
Return Parameters: Returns the quantity as an integer.
Types: Integer data type is used.

setQuantity(int $quantity)

Input: Accepts an integer to set as the quantity of the product.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

Inventory Audits Class

getld()
Input: None
Output: Returns the unique identifier of the inventory audit.
Return Parameters: An integer representing the audit ID.
Types: Integer data type is used.

setId(int $id)
Input: Takes an integer id to set the audit ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getUserld()
Input: None
Output: Returns the user ID associated with the audit.
Return Parameters: An integer representing the user ID.
Types: Integer data type is used.

setUserId(int Suser_id)
Input: Takes an integer user_id to set the user ID.

Output: None.

26

Return Parameters: None.
Types: Integer data type is used.

getProductld()
Input: None
Output: Returns the product ID associated with the inventory audit.
Return Parameters: An integer representing the product ID.
Types: Integer data type is used.

setProductld(int $Sproduct_id)
Input: Takes an integer product_id to set the product ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getExpectedQuantity()
Input: None
Output: Returns the expected quantity of the product in the inventory.
Return Parameters: An integer representing the expected quantity.
Types: Integer data type is used.

setExpectedQuantity(int $expected_quantity)
Input: Takes an integer expected_quantity to set the expected quantity.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getActualQuantity()

Input: None

27

Output: Returns the actual quantity of the product in the inventory.
Return Parameters: An integer representing the actual quantity.
Types: Integer data type is used.

setActualQuantity(int $actual _quantity)

Input: Takes an integer actual_quantity to set the actual quantity.

Output: None.
Return Parameters: None.
Types: Integer data type is used.
getDiscrepancy()
Input: None
Output: Returns the discrepancy between expected and actual quantity.
Return Parameters: An integer representing the discrepancy.
Types: Integer data type is used.
setDiscrepancy(int $discrepancy)
Input: Takes an integer discrepancy to set the discrepancy value.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getAuditDate()
Input: None
Output: Returns the date when the audit took place.
Return Parameters: A string representing the audit date.

Types: String data type is used.

setAuditDate(string $audit_date)
Input: Takes a string audit_date to set the audit date.
Output: None.
Return Parameters: None.
Types: String data type is used.
getLocationDetailld()
Input: None
Output: Returns the location detail ID related to the audit.
Return Parameters: An integer representing the location detail ID.
Types: Integer data type is used.
setLocationDetailld(int $location_detail_id)
Input: Takes an integer location_detail_id to set the location detail ID.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

VendorOrders Class

getld()
Input: None
Output: Returns the unique identifier of the vendor order.
Return Parameters: An integer representing the order ID.
Types: Integer data type is used

setId(int $id)

Input: Takes an integer id to set the vendor order ID.

Output: None.
Return Parameters: None.
Types: Integer data type is used.

getVendorld()
Input: None
Output: Returns the vendor ID associated with the order.
Return Parameters: An integer representing the vendor ID.
Types: Integer data type is used.

setVendorlId(int $vendor_id)
Input: Takes an integer vendor_id to set the vendor ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getOrderDate()
Input: None
Output: Returns the date when the vendor order was placed.
Return Parameters: A string representing the order date.
Types: String data type is used.

setOrderDate(string Sorder_date)
Input: Takes a string order_date to set the order date.
Output: None.
Return Parameters: None.
Types: String data type is used.

getStatus()

30

Input: None
Output: Returns the status of the vendor order.
Return Parameters: A string representing the order status.
Types: String data type is used..

setStatus(string $status)
Input: Takes a string status to set the order status.
Output: None.
Return Parameters: None.
Types: String data type is used.

getTruckld()
Input: None
Output: Returns the truck ID associated with the vendor order.
Return Parameters: An integer representing the truck ID.
Types: Integer data type is used.

setTruckld(int $truck_id)
Input: Takes an integer truck_id to set the truck ID.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

VendorOrderltems Class

getld()
Input: None

Output: Returns the unique identifier of the vendor order item.

Return Parameters: An integer representing the order item ID.
Types: Integer data type is used.

setld(int $id)
Input: Takes an integer id to set the vendor order item ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getOrderld()
Input: None
Output: Returns the vendor order ID associated with the order item.
Return Parameters: An integer representing the order ID.
Types: Integer data type is used.

setOrderlId(int Sorder_id)
Input: Takes an integer order_id to set the order ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getProductld()
Input: None
Output: Returns the product ID associated with the order item.
Return Parameters: An integer representing the product ID.
Types: Integer data type is used.

setProductld(int Sproduct_id)

Input: Takes an integer product_id to set the product ID.

31

32

Output: None.
Return Parameters: None.
Types: Integer data type is used.
getQuantity()
Input: None
Output: Returns the quantity of the product in the order item.
Return Parameters: An integer representing the quantity.
Types: Integer data type is used.
setQuantity(int $quantity)
Input: Takes an integer quantity to set the product quantity.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

Racks Class

getld()
Input: None
Output: Returns the unique identifier of the rack.
Return Parameters: An integer representing the rack ID.
Types: Integer data type is used.
setId(int $id)
Input: Takes an integer id to set the rack ID.
Output: None.

Return Parameters: None.

Types: Integer data type is used.
getColor()
Input: None
Output: Returns the color of the rack.
Return Parameters: A string representing the color.
Types: String data type is used.
setColor(string $color)
Input: Takes a string color to set the rack color.
Output: None.
Return Parameters: None.

Types: String data type is used.

Colors Class

getld()
Input: None
Output: Returns the unique identifier of the color.
Return Parameters: An integer representing the color ID.
Types: Integer data type is used.
setId(int $id)
Input: Takes an integer id to set the color ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getName()

34

Input: None
Output: Returns the name of the color.
Return Parameters: A string representing the color name.
Types: String data type is used.
setName(string $name)
Input: Takes a string name to set the color name.
Output: None.
Return Parameters: None.

Types: String data type is used.

Products Class

getld()
Input: None
Output: Returns the unique identifier of the product.
Return Parameters: An integer representing the product ID.
Types: Integer data type is used.

setId(int $id)
Input: Takes an integer id to set the product ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getName()
Input: None

Output: Returns the name of the product.

Return Parameters: A string representing the product name.
Types: String data type is used.
setName(string $name)
Input: Takes a string name to set the product name.
Output: None.
Return Parameters: None.
Types: String data type is used.
getDescription()
Input: None
Output: Returns the description of the product.
Return Parameters: A string representing the product description.
Types: String data type is used.
setDescription(string $description)
Input: Takes a string description to set the product description.
Output: None.
Return Parameters: None.
Types: String data type is used.
getPrice()
Input: None
Output: Returns the price of the product.
Return Parameters: A floating-point number representing the product price.
Types: Float data type is used.
setPrice(float $price)

Input: Takes a float price to set the product price.

35

36

Output: None.
Return Parameters: None.
Types: Float data type is used.
getCategoryld()
Input: None
Output: Returns the category ID associated with the product.
Return Parameters: An integer representing the category ID.
Types: Integer data type is used.
setCategoryld(int Scategory_id)
Input: Takes an integer category_id to set the product category ID.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

Vendors Class

getld()
Input: None
Output: Returns the unique identifier of the vendor.
Return Parameters: An integer representing the vendor ID.
Types: Integer data type is used.
setId(int $id)
Input: Takes an integer id to set the vendor ID.
Output: None.

Return Parameters: None.

37

Types: Integer data type is used.
getName()
Input: None
Output: Returns the name of the vendor.
Return Parameters: A string representing the vendor name.
Types: String data type is used.
setName(string $name)
Input: Takes a string name to set the vendor name.
Output: None.
Return Parameters: None.
Types: String data type is used.
getEmail()
Input: None
Output: Returns the email address of the vendor.
Return Parameters: A string representing the vendor email.
Types: String data type is used.
setEmail(string $email)
Input: Takes a string email to set the vendor email.
Output: None.
Return Parameters: None.
Types: String data type is used.
getPhone()
Input: None

Output: Returns the phone number of the vendor.

Return Parameters: A string representing the vendor phone number.

Types: String data type is used.
setPhone(string $phone)
Input: Takes a string phone to set the vendor phone number.
Output: None.
Return Parameters: None.

Types: String data type is used.

Trucks Class

getld()
Input: None
Output: Returns the unique identifier of the truck.
Return Parameters: An integer representing the truck ID.
Types: Integer data type is used.
setId(int $id)
Input: Takes an integer id to set the truck ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getLicensePlate()
Input: None
Output: Returns the license plate number of the truck.
Return Parameters: A string representing the truck’s license plate.

Types: String data type is used.

38

setLicensePlate(string $license_plate)
Input: Takes a string 1icense_plate to set the truck's license plate number.
Output: None.
Return Parameters: None.
Types: String data type is used.
getDriverName()
Input: None
Output: Returns the name of the truck driver.
Return Parameters: A string representing the driver’s name.
Types: String data type is used.
setDriverName(string $driver_name)
Input: Takes a string driver_name to set the driver’s name.
Output: None.
Return Parameters: None.

Types: String data type is used.

Users Class

getld()
Input: None
Output: Returns the unique identifier of the user.
Return Parameters: An integer representing the user ID.
Types: Integer data type is used.
setId(int $id)

Input: Takes an integer id to set the user ID.

Output: None.
Return Parameters: None.
Types: Integer data type is used.
getUsername()
Input: None
Output: Returns the username of the user.
Return Parameters: A string representing the username.
Types: String data type is used.
setUsername(string Susername)
Input: Takes a string username to set the username.
Output: None.
Return Parameters: None.
Types: String data type is used.
getPassword()
Input: None
Output: Returns the password of the user.
Return Parameters: A string representing the password.
Types: String data type is used.
setPassword(string $Spassword)
Input: Takes a string password to set the password.
Output: None.
Return Parameters: None.
Types: String data type is used.

getRole()

41

Input: None
Output: Returns the role of the user.
Return Parameters: A string representing the user's role.
Types: String data type is used.
setRole(string Srole)
Input: Takes a string role to set the user’s role.
Output: None.
Return Parameters: None.

Types: String data type is used.

UserRoles Class

getld()
Input: None
Output: Returns the unique identifier of the user role.
Return Parameters: An integer representing the user role ID.
Types: Integer data type is used.

setId(int $id)
Input: Takes an integer id to set the user role ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getName()
Input: None

Output: Returns the name of the user role.

Return Parameters: A string representing the role name.

Types: String data type is used.
setName(string $name)

Input: Takes a string hame to set the role name.

Output: None.

Return Parameters: None.

Types: String data type is used.

InventoryTransactions Class

getld()

Input: None

Output: Returns the unique identifier of the inventory transaction.

Return Parameters: An integer representing the transaction ID.

Types: Integer data type is used.
setId(int $id)
Input: Takes an integer id to set the transaction ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getProductld()

Input: None

Output: Returns the product ID associated with the inventory transaction.

Return Parameters: An integer representing the product ID.

Types: Integer data type is used.

42

43

setProductld(int $Sproduct_id)
Input: Takes an integer product_id to set the product ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getUserld()
Input: None
Output: Returns the user ID associated with the transaction.
Return Parameters: An integer representing the user ID.
Types: Integer data type is used.

setUserld(int Suser_id)
Input: Takes an integer user_1id to set the user ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getChangeType()
Input: None
Output: Returns the type of change made in the transaction (e.g., "addition",
"removal").
Return Parameters: A string representing the change type.
Types: String data type is used.

setChangeType(string $Schange type)
Input: Takes a string change_type to set the type of change.

Output: None.

44

Return Parameters: None.
Types: String data type is used.
getQuantity()
Input: None
Output: Returns the quantity involved in the transaction.
Return Parameters: An integer representing the quantity.
Types: Integer data type is used.
setQuantity(int $quantity)
Input: Takes an integer quantity to set the transaction quantity.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getPreviousQuantity()
Input: None
Output: Returns the previous quantity before the transaction.
Return Parameters: An integer representing the previous quantity.
Types: Integer data type is used.
setPreviousQuantity(int Sprevious_quantity)
Input: Takes an integer previous_quantity to set the previous quantity.
Output: None.
Return Parameters: None.
Types: Integer data type is used.
getNewQuantity()

Input: None

Output: Returns the new quantity after the transaction.
Return Parameters: An integer representing the new quantity.
Types: Integer data type is used.

setNewQuantity(int $Snew_quantity)
Input: Takes an integer new_quantity to set the new quantity.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getTransactionDate()
Input: None
Output: Returns the date of the transaction.
Return Parameters: A string representing the transaction date.
Types: String data type is used.

setTransactionDate(string $Stransaction_date)
Input: Takes a string transaction_date to set the transaction date.
Output: None.
Return Parameters: None.
Types: String data type is used.

getLocationDetailld()
Input: None
Output: Returns the location detail ID associated with the transaction.
Return Parameters: An integer representing the location detail ID.
Types: Integer data type is used.

setLocationDetailld(int $location_detail id)

45

Input: Takes an integer location_detail_id to set the location detail ID.
Output: None.
Return Parameters: None.

Types: Integer data type is used.

Locations Class

getld()
Input: None
Output: Returns the unique identifier of the location.
Return Parameters: An integer representing the location ID.
Types: Integer data type is used.

setld(int $id)
Input: Takes an integer id to set the location ID.
Output: None.
Return Parameters: None.
Types: Integer data type is used.

getRacklId()
Input: None
Output: Returns the rack ID associated with the location.
Return Parameters: An integer representing the rack ID.
Types: Integer data type is used.

setRackld(int $Srack_id)
Input: Takes an integer rack_id to set the rack ID.

Output: None.

47

Return Parameters: None.

Types: Integer data type is used.

getBay()

Input: None
Output: Returns the bay location within the rack.
Return Parameters: A string representing the bay.
Types: String data type is used.

setBay(string $bay)
Input: Takes a string bay to set the bay location.
Output: None.
Return Parameters: None.

Types: String data type is used.

Files accessed
As of now, no data will be stored on any handheld devices. All data will be on a server.

Including the database and application functions.

Real-time requirements

The program needs to run in a reasonably speedy amount of time. If the application is too
slow to retrieve, add, or edit data, there could be delays or users could get frustrated and
look for alternatives. If the application is locally hosted connection to the LAN is necessary
and if hosted remotely an internet connection is required. Ideally when remote, it would be

as fast as if the interaction was on a local system.

Messages

001 Invalid Data
002 Incomplete Data
003 Product Does Not Exist
004 Item Does Not Exist
005 Location Does Not Exist
006 User Does Not Exist
007 Customer Does Not Exist
404 Page No longer Available
Narrative / PDL
Menu:
1. Product
2. Item

3. Location

4. Customer

5. Inventory
Product:
1. Add

Input required data then returned to menu with confirmation.
2. Remove
Input product to be removed then returned to menu with confirmation.
3. View
View all products in table format.
[tem:

1. Add

49

Input required data then returned to menu with confirmation.
2. Remove

Input item to be removed then returned to menu with confirmation.

3. View
View all items in table format.
Location:
1. Add
Input required data then returned to menu with confirmation.
2. Remove
Input required location to be removed then returned to menu with confirmation.
3. View
View all locations in table format.
Customer:
1. Add
Input required data then returned to menu with confirmation.
2. Remove
Input required customer to be removed then returned to menu with confirmation.
3. View
View all customers in table format.
Inventory:
1. View

View all inventorys in table format.

50

Decision: Programming language/Reuse/Portability

The team decided on using PHP as the main programing language for this product. We chose it
for a few reasons. There is a large number of public libraries that will improve development time
and ease of integration. PHP also has the ability to generate and run html code in the same file
allowing for all the code for one page to be in a single file. Being able to integrate html code
allows us to use a website template for a quick and easy professional looking interface. One of
our members has experience writing in PHP, Brain Colditz, he has worked on a number of other
projects using the language and is able to help familiarize us with it. The PHP language is similar

to other languages the rest of us have used so it will be a simple transition.

Implementation Timeline

December January February March April May
Developing Developing Developing Developing/ | Developing/ | Testing/
Testing Testing Present

Design Testing

Design testing will be done throughout the entire development process. This will be
Done as each section is completed. Design testing will include peer code reviews. Each of us will
review the written code to give constructive criticism as we are all computer science majors.
Each member of the developing team will try to “break” our application. We will try to break the
application by looking for any bugs that might exist and inputting incorrect data. This will ensure
that our code is implemented correctly and that our application is operating as intended. The

testing team will be the development team. This will enable quick real-time results.

Appendix A: Schematic & Bill of Materials (BOM)

51

We have no hardware costs.

The Website Template cost $20.

Appendix B: Team Details

The leader of this documentation was William Serowik. All members took part in
proofreading, formatting, and grammar evaluations. Each member of the team completed their
section as well
as helped to add to other members sections. The requirement document was created by all the
following individual efforts:

Brian was responsible for Design Details, System Modules and responsibilities, System
Overview, Architectural Diagram, Module Cohesion, Module Coupling, Design Analysis, and
Data Flow or Transaction Analysis.
Shakear was responsible for Design Organization, Modules used, Files accessed, Real-time
requirements, Messages, Narrative / PDL, and Decision: Programming
language/Reuse/Portability.
Ty was responsible for Detailed tabular description of Classes/Objects, Description, Data
members / types / constraints, Member function listing / description, and Functional description
Input/output/return parameters / type.
William was responsible for Abstract, Description of the Document, Purpose and Use, Ties to
the Specification document, Intended Audience, Project Block Diagram with description
Implementation Timeline, and Design Testing.
Other contributions that were coordinated by group members consisted of:

e Discord meetings/discussion

e In person discussion

52

e Formatting and planning outline of document
e Meeting at Writing Center

e Feedback and Proofreading

Appendix C: Writing Center Report

The following notes related to your 12/10/2024 1:30 PM EST appointment with Caroline
Krofcheck have been shared with you:

Student came into the writing center to review senior project for software engineering. We talked
about formatting for the document including improving margins and spacing issues.

-Caroline Krofcheck
Foundry Writing Center Consultant

Appendix D: Workflow Authentication

I, Brian Colditz, agree with the details defined in this document that represent functional
requirements of WMS. Also, I agree that the work that was done as stated by this document

et i

Signature: Date: 12/10/2024

53

I, Ty Kress, agree with the details defined in this document that represent functional requirements

of WMS. Also, I agree that the work that was done as stated by this document

Signature: A Date: 12/10/2024
I, Shakear Wilson, agree with the details defined in this document that represent functional

requirements of WMS. Also, I agree that the work that was done as stated by this document

bl { A0~
Signature: Date: 12/10/2024

I, William Serowik, agree with the details defined in this document that represent functional

requirements of WMS. Also, I agree that the work that was done as stated by this document

Wasar 80)
Signature: Date: 12/10/2024

Appendix E: References

Apache and Nginx Web Servers — Ispmanager blog. — Ispmanager Blog. (2023, March 14).
https://www.ispmanager.com/news/apache-nginx-ols

Modular Architecture Software Development. TRIARE. (2024, October 27).
https://triare.net/insights/modular-architecture-software/

https://www.ispmanager.com/news/apache-nginx-ols
https://triare.net/insights/modular-architecture-software/

	Categories Class
	Customers Class
	Orders Class
	OrderItems Class

